Ich möchte den Winkel von Moving Average 10 berechnen. Doppel-MAShift1 iMA (NULL, 0, MA, 0, MODESMA, PRICECLOSE, 3) Doppel-MAShift3 iMA (NULL, 0, MA, 0, MODESMA, PRICECLOSE, 7) (MathTan ((MASHift1-MAShift3) / (WindowPriceMax () - WindowPriceMin ())) / ((Test-0.0) / WindowBarsPerChart ()))) 180 / 3.14 es Scheinen die Berechnung der falschen Winkel, ich bekomme Antworten ohne Sinn, ich möchte überprüfen, was ist der Winkel zwischen 3 und 7 Schichten zurück. Sie können nicht richtig den Winkel des gleitenden Durchschnittes berechnen, weil das von der Amplitude des Diagramms abhängt (wie viele Balken im Diagramm angezeigt werden) und ist daher eine sehr disfunktionale Art, Daten zu analisieren. Aber Sie können die Veränderung des gleitenden Mittels über die Zeit berechnen: Wenn es über 0 ist, bedeutet dies, dass es steigt. Wenn nicht, fällt. Dann können Sie die in einer Balkenanzeige (wie OsMA oder Awesome) zu malen und die Informationen visuell zu malen. Sie können nicht richtig den Winkel des gleitenden Durchschnittes berechnen, weil das von der Amplitude des Diagramms abhängt (wie viele Balken im Diagramm angezeigt werden) und ist daher eine sehr disfunktionale Art, Daten zu analisieren. Aber Sie können die Veränderung des gleitenden Mittels über die Zeit berechnen: Wenn es über 0 ist, bedeutet dies, dass es steigt. Wenn nicht, fällt. Dann können Sie die in einer Balkenanzeige (wie OsMA oder Awesome) zu malen und die Informationen visuell zu malen. So dass Sie sagen, es nur visuell cant Ich berechne es logicallyThe slope von einem gleitenden Durchschnitt Die Steigung eines gleitenden Durchschnitt Dies kann mehr eine mathematische Frage als eine Excel-Frage, aber ich habe keine Ahnung, was die Gleichung sein könnte, so. In Spalte C habe ich eine zehn Perioden gleitende Durchschnitt meiner Daten in col B. In col D, auf jeder Zeile möchte ich die Slope (ist Slope das rechte Wort), dass gleitenden Durchschnitt. Was ich vorstelle, ist, wo der gleitende Durchschnitt flach auf dem Diagramm ist, das ich habe, würde die entsprechende Steigung in col D 0 sein. Wenn die Steigung des beweglichen Mittels wirklich steil waren (nicht vertikal, aber an wie ein 45 Grad-Winkel sagen) Wert in col D wäre 45. Wie macht man dies in Col D Muss ich zurück zur High School Re: Die Steigung eines gleitenden Durchschnitt Sie haben eine Funktion von Zeit zu Durchschnitt. Wenn Sie Zeiten in Spalte A und Mittelwerte in Spalte B haben, gibt (B3-B1) / (A3-A1) die Steilheit an dem Punkt (A2, B2) zurück. DEGREES (ATAN ((B3-B1) / (A3-A1) Multiplikator)) Hinzufügen einer Trend - oder gleitenden Mittelwertlinie zu einem Diagramm Gilt für : Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Aussicht 2013 PowerPoint 2013 Mehr. Weniger Zeigt Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm an. Können Sie eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorherzusagen. So prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für den zukünftigen Umsatz vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D Diagramm hinzufügen, das nicht gestapelt wird, einschließlich Bereich, Stab, Spalte, Linie, Vorrat, Streuung und Luftblase. Sie können keine Trendlinie zu einem gestapelten, 3-D-, Radar-, Kuchen-, Oberflächen - oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Klicken Sie in Ihrem Diagramm auf die Datenreihe, zu der Sie eine Trendlinie oder einen gleitenden Durchschnitt hinzufügen möchten. Die Trendlinie beginnt am ersten Datenpunkt der gewählten Datenreihe. Aktivieren Sie das Kontrollkästchen Trendline. Um einen anderen Trendlinienbereich zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Vorhersage. Oder Zwei Periodenbewegungsdurchschnitt. Klicken Sie für weitere Trendlinien auf Weitere Optionen. Wenn Sie Mehr Optionen wählen. Klicken Sie unter Trendlinienoptionen im Fenster "Trendlinie formatieren" auf die gewünschte Option. Wenn Sie Polynom wählen. Geben Sie die höchste Leistung für die unabhängige Variable im Feld Auftrag ein. Wenn Sie Moving Average wählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden, um den gleitenden Durchschnitt im Feld Zeitraum zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadratwert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie mit Ihren tatsächlichen Daten übereinstimmen) bei oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-Quadrat-Wert. Sie können diesen Wert in Ihrem Diagramm anzeigen, indem Sie den Wert "R-Quadrat anzeigen" im Diagrammfenster (Bereich "Trendlinie", "Trendlinienoptionen") anzeigen. In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Linie aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Eine lineare Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten Quadrate, die für eine Linie passen: wobei m die Steigung und b der Intercept ist. Die folgende lineare Trendlinie zeigt, dass die Verkäufe der Kühlschränke über einen Zeitraum von 8 Jahren kontinuierlich zugenommen haben. Beachten Sie, dass der R-squared-Wert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn die Rate der Änderung in den Daten schnell ansteigt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten quadratischen Anpassung durch Punkte: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem festen Raum, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Typischerweise hat eine Order-2-Polynom-Trendlinie nur einen Hügel oder ein Tal, eine Order 3 hat ein oder zwei Hügel oder Täler und eine Order 4 hat bis zu drei Hügeln oder Tälern. Eine polynomische oder krummlinige Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei b und Konstanten sind. Die folgende Polynom-Trendlinie (ein Hügel) der Ordnung 2 zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Linien eine gute Anpassung an die Daten aufweisen. Diese Trendlinie, die eine gekrümmte Linie darstellt, ist für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens im 1-Sekunden-Intervall. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine Leistungs-Trendlinie verwendet diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Distanzmesskarte zeigt den Abstand in Metern pro Sekunde an. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Diese Kurve zeigt eine gekrümmte Linie, wenn Datenwerte mit stetig steigenden Werten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, während es altert. Beachten Sie, dass der R-Quadrat-Wert 0.990 ist, was bedeutet, dass die Linie die Daten nahezu perfekt passt. Moving Average trendline Diese Trendlinie gleicht Schwankungen in den Daten aus, um ein Muster oder einen Trend deutlicher darzustellen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (die durch die Option "Periode" festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Zeile. Wenn beispielsweise Period auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie verwendet diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Reihe minus der Die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis sortieren Sie die x-Werte, bevor Sie einen gleitenden Durchschnitt hinzufügen. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Zahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft wurden.
Exponential Moving Average Der Exponential Moving Average Der Exponential Moving Average unterscheidet sich von einem Simple Moving Average sowohl nach Berechnungsmethode als auch in der gewichteten Preisgestaltung. Der Exponential Moving Average (verkürzt auf den Initialen EMA) ist effektiv ein gewichteter gleitender Durchschnitt. Mit der EMA ist die Gewichtung so, dass die letzten Tage Preise mehr Gewicht als ältere Preise gegeben werden. Die Theorie dahinter ist, dass jüngere Preise als wichtiger als ältere Preise angesehen werden, zumal ein langfristiger einfacher Durchschnitt (zum Beispiel ein 200-tägiger Tag) gleiches Gewicht auf Preisdaten hat, die über 6 Monate alt sind und gedacht werden könnten Von so wenig veraltet. Die Berechnung der EMA ist ein wenig komplexer als die Simple Moving Average, hat aber den Vorteil, dass eine große Aufzeichnung von Daten, die jeden Schlusskurs der letzten 200 Tage abdeckt (oder aber viele Tage betrachtet werden) nicht beibehalten werden muss ....
Comments
Post a Comment